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APPLYING THE GENERAL LINEAR MODEL
TO REPEATED MEASURES PROBLEMS

John T. Pohlmann
and

Michael G. McShane

Southern Illinois University, Carbondale

The purpose of this paper is to demonstrate the use of the

general linear model (GLM) in problems with repeated measures on

a dependent variable. Such problems include pretest - posttest

designs, multi-trial designs, and groups by trials designs. For each

of these designs, a GLM analysis is demonstrated wherein full models

are formed and restrictions are placed on the full models that reflect

various research questions. The restricted models and full models are

then compared with an F test to ascertain whether a significant re-

duction in R2 was realized as a result of the restriction.



APPLYING THE GENERAL LINEAR MODEL
TO REPEATED MEASURES PROBLEMS

John T. Pohlmann
and

Michael McShane

Southern Illinois University, Carbondale

Among the most difficult types of problems to formulate with the

general linear model are those in which the dependent variable has been

repeatedly measured on a group of subjects. The primary difficulty en-

countered is that of properly developing a design matrix which will ex-

tract variance in the dependent variable attributed to subject differences.

This variance must be extracted since failure to do so results in a violation

of the assumption of independence of errors. This assumption, unlike the

assumptions of normality and homegeneity of group variances, cannot be

countered by large sample sizes, nor by making group sizes equal (Glass

et.al., 1973). A failure to allow for the dependence of errors in a

multi-trial design can seriously affect the actual probabilities of making

type I or type II errors. The dependence of errors in multi-trial designs

can be controlled by removing from the analysis, variance in the dependent

variable attribltable to individual or subject differences. In the application
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of the GLM to the analysis of such data, this is accomplished through

the use of subject or people vectors.

This paper will demonstrate the use of subject vectors in three types

of designs: (1) a one group pretest - post-test design, (2) a one group

multiple-trial design with more than two trials, and (3) a multiple group-

multiple trial design.

For each of these designs a design matrix was developed which reflected

the full model being analyzed. Restrictions reflecting a research question

were placed upon the full model and the resulting reduced model was then

compared to the full model via on F-ratio to answer the research questions.

For each of the designs examined, the following aspects of the analysis

will be shown:

1. The full general linear model, which reflects all
of the information about the design, will be given.

2. A design matrix, which demonstrates the way the
data would be coded for processing by a regression
analysis program, will be given for the full model.

3. A research question will then be posed. Research
and statistical (null) hypotheses will be stated, and
a restriction will be placed on the full model that
will force the model to conform to the statistical
hypothesis.

4. The restricted model, which reflects a true statistical
hypothesis, will be shown
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5. A design matrix, which demonstrates the way the
data would be coded for processing by a regression
analysis program, will be given for the restricted
model,

6. A summary of the results will then be given, and
an F-ratio will be derived to conduct a test of
significance on the statistical hypothesis.

I. A One Group - Two Trial Design

A one group - two trial design is the type of design usually associated

with a correlated or matched groups t-test; data on some dependent variable

is obtained on a group of subjects at two time periods and a research

hypothesis is usually stated regarding the relative magnitude of the mean

on the dependent variable over the two time periods. For the following

presentation, assume that a group of subjects has been administered a

pretest on a political attitude scale, the group is then subjected to a

series of political television commercials, and finally, the group is

post-tested on a parallel form of the attitude scale. The researcher

may then state a research question such as "Did the T.V. commercial

improve political attitudes?" This research question could be answered

by testing the statistical hypothesis

1101 I/pre = 14/post' or -/pre difpost
0

where AU
pre

= the expected value of the pretest
-7

attitude in the population

post = the expected value of the post-test
attitude in the population.
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The alternate or research hypothesis implied by the research question is

HA' /post > /'pre'
Or

iffpost /'pre ,O0'

Insert Table 1 here

Sample data that will be used to demonstrate the analysis of this

design appears in Table 1, N = 4 (the number of subjects). The full

model necessary to reflect the information available to the researcher is:

Model 1: Y= a0U + a1X +aX
2
+aP

1
+a4 P

2
+a133 .4.a6 P

4
+ E

1 1 2 3 5
E1

where: Y = the attitude score (dependent variable) vector
U = the unit vector
X
1
= a vector containing a 1 if the attitude

score is from the pre-test, 0 otherwise
X
2
= a vector containing a 1 if the attitude

score is from the post-test, 0 otherwise
P (i=1 to 4) = a vector containing a 1 if the score is

from person i, 0 otherwise
a0, al...at = a set of least squares weights derived so

as to minimize the sum of the squared
elements in the error vector, E.

E = the error vector

The design matrix suggested by this model is shown in Figure 1.

Insert Figure 1 here

Now the weights al and a will take on values which will reflect the
2

difference between the pre-test and post-test means, i.e., al-a2=X1-X2,

where X
1

and X
2
are the pre-test and post-test means respectively. Recall

that the statistical hypothesis was Ai
re

= hence the restriction0,7p
j,

4
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on Model 1 required to test the statistical hypothesis is

a
1
= a

2

Imposing this restriction on Model 1, we obtain Model 2

Model 2a: Y = a0U + a1X1 + a1X2 + a3P1 + a4P2 + a5P3 + P4 + E2

Collecting terms with like weights we obtain Model 2b.

Model 2b: Y = a0U + al (X1 +X2) + a3P1 + a4P2 + a5P3 + a6134 + E2

Since the vector (X1 + X2) = U, the simplest form of the reduced

model is Model 2c.

Model 2c: Y = a0U + a3P1 + a4P2 + a5P3 + aP4 + E2

The design matrix for Model 2c appears in Figure 2.

Insert Figure 2 here

Associated with each of these models (Model 1 and Model 2c) will

be a squared multiple correlation (R2) which may be interpreted as the

proportion of variance in the dependent variable, Y, accounted for by

the weighted combination of the predictor variables, U1 X ..P
1 1. 4

R2 for Model 1 is obtained as follows:

(1) R
2 = 1 ESS1

S-5
Y

where: ESS1 = sum of the squared elements in the error
vector, El, for Model 1.

SSy = sum of the squared deviations of the criterion
scores (Y) about their grand mean.
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In the same fashion an R
2
value for Model 2C can be obtained. The

difference between these two R
2
's then serves as a measure of the contri-

bution of trial differences to accounting for variance in the criterion

variable. The difference between the two R2's may then be tested for

significance with an F-ratio. The formula for F is

(R - - 1)
(2) F= -R1) / (N - 1)"

where R2
1

= the squared multiple correlation between the
prediction set and the dependent variables for
Model 1

R 2 = the squared multiple correlation between the
prediction set and the dependent variable for
Model 2

1
1
= the number of linearly independent vectors

(predictors) in Model 1

1
2
= the number of linearly independent vectors in
Model 2

A 1

N = the total number of observations. In multiple Tricl
designs this is the number of subjects x the
number of trials

If the statistical hypothesis is true, or if the restricted model is

the correct model in the population, F will be distributed as a central F

distribution with (11 - 12) and (N - 11) degrees of freedom.
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Numerical Solution Using the Data in Table 1

Table 2 contains the values of the regression weights, R2 , and the

F ratio observed in the statistical test of the restriction. Note that

the number of linearly independent vectors in Model 1 is 5. This indi-

cates that of the 7 vectors U, Xl...P
4
, only 5 are linearly independent

and 2 are redundant, or linearly dependent. The use of vector algebra

on the data matrix for Model 1 (Figure 1) will show that X2 = U - Xi,

and P4 = U - P1 + P2 + P3 leaving U, X1, P1, P2 and P3 as a set of linearly

independent vectors. It should be mentioned here that every predictor

vector in Model 1 can be expressed as a linear combination of the other

vectors in the predictor set, and the selection of the specific vectors

which are to be considered as independent is arbitrary. The important

point is that only 5 of the 7 predictor vectors are independent. Similarly,

of the 5 predictor vectors included in Model 2C only 4 are linearly in-

dependent, since P4 = U P1 + P2 + P3. Consequently the restriction

imposed on Model 1 to obtain Model 2C resulted in restricting out one

linearly independent vector.
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The restriction resulted in a reduction in R
2

of .21 and the

resulting F ratio was 5.40 which is insignificant, given an alpha level

of .05 (one tailed). We therefore should conclude that the television

commercials did not result in a significant increase in political attitudes.
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A ONE-GROUP - MULTIPLE TRIAL DESIGN WITH MORE THAN TWO TRIALS

The second type of design which will be considered in the present paper is

the case in which one group is measured on more than two occassions. For the

presentation of this design, assume that a group of students has been given an

achievement test at the beginning of a course of study. (Pre-test), Then, at the

end of the course the same group is given a parallel form of the same test (Post-

test), and after a suitable period is given a third form (also parallel) of the

same test as a long-term retention test (LTR). Sample data that will be used to

demonstrate the analysis of this design appear in Table 3.

Insert Table 3 Here

Two of the possible research questions which may be of interest to a

researcher in this kind of a situation may be a question comparing any two of

the three tests, and a question comparing one of the tests to the average of the

other two.

The first kind of research question might be worded:

Is the mean for the Post-test greater
than the mean for the Pre-test?
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The research question could be answered by testing the statistical hypothe-

sis that,

or,

or,

The mean for the Post-test is equal
to tha mean for the Pre-test,

H
0
144 1pre = post

pre -de-post = 0

When, /pre = the expected value of
the pre-test score in the population

1164post = the expected value of
the post-test score in the population

The Full Model necessary to reflect the information in Table 3 is:

Model 3

Y = aoU + alX1 + a2X2 + a3X3 + a4P1 + a5P2 +aP +E
6 3 1

where Y = the dependent variable (achievement score)
U = the unit vector
X
1

= 1 if the dependent variable was observed on the
Pre-test, 0 otherwise

X
2
= 1 if the dependent variable was observed on the
Post-test, 0 otherwise

X
3
= 1 if the dependent variable was observed on the
LTR-test, 0 otherwise

P
i

= 1 to 3) = 1 if the observation is for person
i, 0 otherwise

E
1
= error vector

a a ,..., a are least squares weighting coefficients
0 1 6

ca culated so as to minimize the sum of
squared elements in the error vector.
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The design matrix which reflects this model is presented in Figure 3.

Insert Figure 3 Here

In Model 3, weights al and a2 will take on values which will reflect the

difference between the pre-test and the post-test means. Since the statistical

hypothesis ('pre =)44"post) is that the pre-test mean and post -test mean are

equal, the restriction on Model 3 which produces this state of affairs is,

a
1
= a

2

Imposing this restriction on Model 3, we obtain Model 4a.

Model 4a: Y=aoU +aX
1
+a1 X +aX +aP +aP +aP + E

1 2 3 3 4 1 5 2 6 3 2

Collecting terms with like weights we obtain Model 4b.

Model 4b: Y=aoU+al
1
+ X

2
) +a3 X

3
+a4 P

1
+a5 P

2
+a6 P

3
+ E2

The design matrix for Model 4b appears in Figure 4.

Insert Figure 4 Here

As in the first example, Model 3 and Model 4b, will each have an associat-

ed R 2
. The difference between these two R21 s serves in this case as a measure



4

of the contribution of the difference between the pre-test and post-test to ac-

counting for variance in the criterion variable. The significance of this diff-

erence may again be tested using the F-ratio.

NUMERICAL SOLUTION USING THE DATA IN TABLE 3

Table 4 contains the values of the regression weights, R2's, and the F-

ratio observed in the statistical test of the restrictions made on Model 3.

Note that there are 5 linearly independent vectors in Model 3, the Full Model,

and 4 linearly independent vectors in Model 4b, the restricted model. Once

again, the restriction placed on Model 3 to obtain Model 4b resulted in one

linearly dependent vector being removed from the model.

This restriction resulted in a reduction in R2 of .818 from Model 3 to

Model 4b. The resulting F-ratio was 51.86 (with 1 and 4 degrees of freedom),

which was significant given an alpha of .05 (one tailed). Therefore, it can be

concluded that the statistical hypothesis can be rejected, and the research hypo-

thesis that the Post-test mean is greater than the Pre-test mean can be accepted

as tenable.

A Second Question

A second question of interest to a researcher using this type of design
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might be one which compares one of the tests with the average of the other two

tests. For example, a researcher might want to know,

Is the average of the post-test mean and
LTR mean greater than the pre-test mean?

This question would be answered by testing the statistical hypothesis that:

The average of the post-test mean and
the LTR mean is equal to the pre-test mean,

or,

_ft post teLTR =)44pre
2

The Full Model which is used to test this hypothesis is Model 3, which re-

flects all of the information in Table 3. In this case however, the restriction

on that model must take into account weights al, a2, and a3, which reflect the

pre-test mean, post-test mean, and LTR mean. The restriction which reflects

the statistical hypothesis in this case is

al = a
2
+ a

3

2

This restriction can be represented as

a
1
= ka

2
+ ka

3
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Imposing this restriction on Model 3, we obtain Model 5a.

Model 5a: Y = aoU + (ka
2
+ ka

3
)X

1
+aX +aX +aP +aP +aP + E

2 2 3 3 4 1 5 2 6 3 3

since, (ka
2
+ ka

3
) X

1

= (ka2X1) + (kyl)

= a
2

(1/2X

1
) + a3('1)

SimplifyingSimplifying Model 5a, we obtait Model 5b.

Model 5b: Y=aoU+a2 (kX
1
) + a ( k X ) 4.aX + a X + a4P +aP +aP

3
+ E

3 1 2 3 3 4 5 2 6
E3

Collecting terms with like weights we obtain Model 5c.

Model 5c: Y = aoU + a
2 I

(kX, + X
2)

+ a
3
(IA

1
+ X

3)
+ a4P

1
+ a5P

2
+ a6P

3
+ E3

The design matrix for Model 5c appears in Figure 5.

Insert Figure 5 Here

In order to answer this research question, the significance of the differ-

ence between the R
2
associated with Model 3 (the Full Model) and the R

2
assoc-

iated with Model 5c (the Restricted Model) is tested. The F-ratio is again used

to test the significance of the difference between R2's.



NUMERICAL SOLUTION OF THE SECOND TYPE OF QUESTION USING THE DATA IN TABLE 3

Table 5 contains the values of the regression weights, R2's, and the F-

Ratio observed in the restrictions made on Model 3 to obtain Model 5c. As be-

fore, there were 5 linearly independent vectors in Model 3, and the restriction

placed upon the Full Model restricted out 1 linearly independent vector, leaving

4 linearly independent vectors in Model 5c, the restricted model.

Since the research question posed in this instance was a directional ques-

tion, before interpreting the results it is necessary to ensure that the results

are in the hypothesized direction. This can be done directly from the data in

Table 3. In this data it can be seen that for each individual the mean of the

Post-test and LTR-test scores were higher than the Pre-test scores. In this

case, then, the results are in the hypothesized direction and may be interpreted

as in Table 5.

The restriction placed on Model 3 to produce Model 5c resulted in a de-

crease in R
2
of .442. The resulting F-Ratio was 27.99 with 1 and 4 degrees of

freedom, which las significant given an alpha of .05. With these results the

statistical hypothesis may be rejected and the research hypothesis that the mean

of the post-test and the LTR test scores is greater than the mean of the pre-

test scores may be retained as tenable.
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III. A MULTI-GROUP AND MULTI-TRIAL DESIGN

For this demonstration, assume that the design to be analyzed contains

three groups of subjects (a control group, and two experimental groups), and

each group is measured on a pretest and a post-test. This then becomes a three

groups by two trials analysis. The data that will be used to demonstrate a

numerical solution for this design appear in Table 6.

Statistically, this design is a two component design, in that the total

variation in the dependent variable is partitioned into a within subjects com-

ponent and a between subjects component.

Any test of group differences would be treated as a between subjects con-

trast, where as any test of trial (pre-post) differences would be treated as a

within subjects contrast. The purpose of this generalized partition of the

total variance of the dependent variable is that the expected mean squares re-

quired in the formation of the F-ratios take different forms depending upon the

nature of the contrast tested (Winer, 1962, p. 303). An error term based on sub-

ject differences within groups is used to test contrasts between groups, and an

error term based on the interaction of subjects by trials is used to test con-

trasts across trials.
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For the design analyzed here the following sources of variation can be

isolated:

1. Groups- The variation in the dependent var-
iable attributable to group differ-
ences.

2. Trials- The variation in the dependent varia-
ble attributable to trial differences.

3. Groups X Trials- The variation in the depen-
dent variable attributable
to the interaction of group
and trial effects.

4. Subjects Within Groups- The variation in the
dependent variable
attributable to sub-
jects' deviations from
their group means.

5. Trials X Subjects Within Groups- The varia-
tion in the dependent variable at-
tributable to the interaction of
subjects and trials.

Each of these components of variance are independent, and when the sum of

squares for each component are added they will equal the total sum of squares

for the dependent variable.

The net effect of the requirement to partition the total variance into two

global sources (between subjects and within subjects) is that two full models

are required to analyze data from this design. One model will be used to ana-

lyze repeated measures contrasts and the other model will be used to analyze

the between groups contrasts.
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Testing Trial and Groups X Trial Effects

A model that could serve as a full model for repeated measures contrasts

trials and groups x trial,' is

Model 6 Y=a0U+aiXi+a2Xf*a3X3+a4X4+a5X5+a6X6+a7P1+53P2+a9PsfaloP4+aliP5+al2P6+E6

where Y = a vector containing the values of the
dependent variable

U = a unit vector.
Xi = a vector containing a. 1 if the dependent

variable observation is from the control
group on the pre-test, 0 otherwise

X2 = 1 if observation is from the control group
on the post-test, 0 otherwise

X3 = 1 if observation is from the 1st experimental
group on the pre-test, 0 otherwise

X4 = 1 if observation is from the 1st experimental
group on the post-test, 0 otherwise

X
5
= 1 if observation is from the 2nd experimental

group on the pre-test, 0 otherwise
X6 = 1 if observation is from the 2nd experimental

group on the post-test, 0 otherwise
Pi(i=1,6) = vectors containing l's if the observation is

from subject i, 0 otherwise
El = the error vector

a0...a12 = least squares weighting coefficients.

Figure 6 contains the vector representation of Model 6. With a model this

complex it becomes rather difficult to determine the number of linearly in-

dependent vectors, therefore one has to approach the problem in stages. Con-

sider first the unit vector, U, and vectors X1 through X6. Proceeding from

left to right in Figure 6, vectors U through X5 can be seen to be linearly

independent, but vector X6 can be obtained as follows:

X6 = u - (X
1
+ X2 + X3 + X4 + X5)
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Hence X
6

is linearly dependent. Thus far 6 linearly independent vectors

have been noted. Now proceeding from left to right starting with P1, P1

is seen to be linearly independent of U through X6. However Pl can be obtained

as follows:

P2 = X1 + X2 - P1

Hence P2 is linearly dependent. Considering P3 and P4 gives a similar result;

P3 is linearly independent, but P4 may be obtained as follows:

P4 = X3 + X4 - P3

Similarly, of P5 and P6, P5 is linearly independent and P6 is linearly depen-

dent. For the vectors P
1
through P6, only 3 linearly independent vectors are

present. Consequently, for Model 6 there are a total of 9 linearly indepen-

dent vectors.

The hypothesis that we test when trial differences are the contrast of

concern is

Ho:141Apretest post-test

In order to generate a restricted model that will allow this hypothesis to be

tested, the following restriction must be imposed on Model 5:

al + a3 + a5 = a2 + a4 + a6

3 3
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In words, this restirction means we are forcing the pre-test mean averaged

over groups to equal the post-test mean averaged over groups. This restric-

tion can be restated in the following form, solving for al

al = a2 + a4 + a6 - a3 - a5

When this restriction is imposed upon Model 5, we obtain Model 7a.

Model 7a: Y=a0U+(a2+a4+a6-a3-a5)X1+a2X2+a3X3+a4X4+a5X5+a6X6+a7P1 +a8P2+a9F3+

a10P4+a1P 5+a 12 P 6 +E7

Distributing X1 over the weights contained in the parentheses and then

collecting terms with like weights we obtain Model 7b as the restricted model.

Model 7b: Y=a01.4a2(X1 +X0+a3(X3-X1)+a4(X1 +X4)+a5(X5-X1)+a6(X1 fX6)+a7P1+

ag2+a9P3+al0P4+a11P5+a12P6+E7

Figure 7 contains the design matrix for model 7b. Again, it is difficult

to determine at a glance the number of linearly independent vectors in Model

7b, but if one proceeds in stages the process is simplified. Consider first

the vectors U through (X1 +X6). The vectors U, (X1 +X2),(X3-X1), (X1 +X4) and

QC5 -X1) are all linearly independent. However the vector (X1 +X6) is linearly

dependent, since

(Xl+X6)41-(Xl+X2)43-X1WX1+X4)-1-(C5-X1)

Therefore there are 5 linearly independent vectors in the set of vectors

containing U through (X1 +X6). As in Model 6. there are 3 linearly independent
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vectors composed of P1 through P6. Consequently Model 7b contains a total

of 8 linearly independent vectors.

Model 6 can also be used as a full model to test the groups X trials

interaction question. The hypothesis of no interaction can be stated as,

Ho: Ar, - 1(1 =1(4 - k
3

= Iir /4/5

where 14(
1

= population pre.test mean for group 1

= population posttest mean for group 1
2

= population pre-test mean for group 2
3

4
population post-test mean for group 2

A= population pre-test mean for group 3

ill

= population post-test mean for group 3

5

6

This hypothesis states that the trial differences (post-test-pre-test) are

equal for the three groups. The restriction imposed on model 6 to obtain

a restricted model for testing the groups X trials interaction is,

a2 - al = a - a3 = a6 - a
4 5

This restriction can be restated as follows by solving for a
2

and a :

6

a = a + a4 - a
2 1 3

a = a+ a -a
56 4 3
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Imposing these restrictions on model 6 we obtain model 8a.

Model 8a: Y = a01J + a1X1 + (a
1
+a

4
-a 3) X2 + a3X3 + a4X4 + a5X5 + (a5+a4-a3) X6

+aP +aP + a, ,P +a P +a P +a P+ E
7 1 8 2 10 4 11 5 12 6 8

Distributing vectors X
2 6

and X over the weights contained in the parentheses

and then collecting terms with like weights we obtain model 8b as a restricted

model.

Model 8b: Y = aoU + a
1
(X

1 2
+X ) + a3 (X3- X2 -X6) + a

4
(K

2
+X

4
+X

6
) + a

5
(X

5
+X

6
) + a P

7 1

+ a P
2
+ a P + a P

4
+ a P + a P + E

8 9 3 10 11 5 12 6 3

Figure 8 contains the design matrix for model 8b. The determination of the num-

ber of linearly independent vectors in model 8b is, again, somewhat difficult,

but if the procedures described for models 6 and 7b are followed for model 8b

one finds that there are 7 linearly independent vectors in model 7b. Hence,

the groups X trials restriction restricted out two independent vectors from

model 6.

THE EQUIVALENCE OF THE GROUPS X TRIALS TEST AND A DIFFERENCE SCORE ANALYSIS

The groups X trials interaction analysis can be shown to be indenticai to

an analysis of difference scores. That is, the same results would be obtained



if the following full model was used.

where

8

Model 9: Y =aU+aX +aX +aX + E
0 0 1 1. 2 2 3 3 9

Y = a vector of difference scores (post-test -
0 pre-test)

U = a unit vector

X
1
= a vector containing a 1 if the difference

score is for a subject in the control group,
0 otherwise

X
2
= a vector containing a 1 if the difference

score is for a subject in the first experi-
mental group, 0 otherwise

X = a vector containing a 1 if the difference
3 score is for a subject in the second experi-

mental group, 0 otherwise

E = an error vector

a0...a3 = least squares weights.

This model can be obtained from model 6 by subtracting rows of the design

matrix corresponding to pre-test observations, from the rows of the design mat-

rix corresponding to post-test observations. Row 1 in Figure 9 was obtained by

subtracting row 1 (pre-test for subject 1 in group 1) from row 3 (post-test for

subject 1 in group 1) in the design matrix for model 6 (Figure 6). By repeating

this procedure for each subject we obtain the design matrix in Figure 9. Note

that the subject vectors (P1...P
6
) cancel out, and that vectors X

1
...X

6
become

three sets of redundent group vectors.
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The following equalities can be noted in Figure 9:

X = -X
1 2

X = -',1(

3 4

X = -X
5 6

Consequently X
1

, X
3

and X
5
can be removed from the model because they are linear-

ly dependent. The design matrix in Figure 9 is therefore equivalent to the de-

sign matrix implied by model 9.

The groups X trials interaction test can be achieved with model 9 as a

full model, by testing the hypothesis that all three experimental groups have a

common mean difference score.

Symbolically, the hypothesis tested is,

Ho:
1D1 /42 A3

where = population mean difference score for the
control group.

= population mean difference score for the
first experimental group.

/13
= population mean difference score for the

second experimental group.

The restriction imposed on model 9 to test this hypothesis is,

a = a = a
1 2 3
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When this restriction is placed on the full model the following restricted model

is obtained:

Model 10: Y =aU+ E
D 0 10

The equivalence of the groups X trials interaction test and the test of dif-

ferences between mean difference scores can be further established by calculating

a difference score model by subtracting pre-test and post-test rows in the de-

sign matrix for model 8 (Figure 8). This has been done in Figure 10. Note that

in Figure 10 the subject vectors (P ...P6) have zeroed out, and so have the vectors
1

(K
1
+ X

2
) and (X5 + X

6
). The two vectors which have non-zero eletts (X3 - -

2

X
6
) and (X2 + X

4
+ X6), are linearly dependent on the unit vector. Hence the

design matrix in Figure 10 represents model 10. It follows that the F-ratio

obtained comparing models 7 and 8b will equal the F-ratio obtained comparing

models 9 and 10. This will be demonstrated numerically in a later section of

this paper.

TESTING BETWEEN GROUPS CONTRASTS

A complete general linear model analysis would require the removal of the

subject vectors (P
1
...P

6
) in model 6 and replacing them with a set of vectors

coding the subject by trial effect. This procedure can become very complex,



11

and fortunately we can conduct this analysis by summing trial scores for each

subject and then conducting a simple between groups analysis of variance on the

trial sums.

The full model for between groups comparisons is very similar to model 9.

The difference between the two models is that the dependent variable is a trial

sum, rather than a trial difference. The full model for testing group differ-

ences is,

Model 11: Y =aU+aX +aX +aX + E
s 0 1 1 2 2 3 3 11

where Y
s

= a vector containing the sum of scores for pre
and post test observations for each subject

U = a unit vector

X
1

= a vector containing a 1 if the criterion sum
is from a subject in the control group, 0
otherwise

X a vector containing a 1 if the criterion sum
2

is from a subject in the first experimental
group, 0 otherwise

X = a vector containing a 1 if the criterion sum
3 is from a subject in the second experimental

group, 0 otherwise

E = the error vector
11

a 0...a
3

= least squares regression weights

The design matrix implied by model 11 is shown in Figure 11. As can be seen

in Figure 11, there are three linearly independent vectors in model 11.
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In order to test the hypothesis that the groups differ, the following stat-

istical hypothesis is posed:

Ho: I
ig

S1 S2 /t

where = the population mean of the trial sum for
the control group

IS2 the population mean of the trial sum for
the first experimental group

S3 = the population mean of the trial sum for
the second experimental group.

The restriction imposed on model 11 required to test this hypothesis is,

al = a2 = a3

The restricted model which follows when this restriction is imposed is,

Model 12: Y
s
=a0 U+E

12

Model 12 is a model containing only the unit vector.

NUMERICAL SOLUTIONS FOR SECTION III

The numerical results obtained from the analysis of the data in Table 6

are presented in Tables 7, 8 and 9. Table 7 contains the results of the analysis

for the within subjects components of the problem. Models 6, 7b and 8b were

the models used as the full model, the restricted model for the trial effect,

and the restricted model for the groups x trial interaction effect respectively.
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The F ratios presented in Table 7 obtained for the trial and the

groups x trial effect are both significant (CPC= .05). The results obtained

for the groups x trial effect were the same when original observations were

used (Table 7) and when difference scores were used (Table 8). This finding

serves to further demonstrate the equivalence of the difference score analysis

and the groups x trial interaction analysis.

The results of the analysis of the groups effect is presented in Table 9.

As can be seen in Table 9 the groups effect was also significant (a =.05).

SUMMARY

The purpose of this paper was to demonstrate the use of the general linear

model to answer research questions with designs containing repeated measures on

subjects. Three types of design were presented, 1. a one group-two trial de-

sign, 2. a one group-multi-trial design and 3. a multi-group-two trial design.

For each design a series of research questions were posed, a full linear model

was stated, restrictions consistent with the hypotheses to be tested were stated,

and these restrictions were then imposed on the full model to obtain statistical

tests of the hypotheses. For each design numerical solutions were provided

which demonstrated applications of the generalized procedures discussed in the

text of the paper.
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Table 1

Sample Data for a One Group-Two Trial Analysis

Pre-test Post-Test

Person Political Attitudes Political Attitudes

1 15 17

2 18 18

3 12 18

4 20 24



Vector

U

X
1

X2

P
1

P
2

P3

P
4

RSQ

Table 2

Least Squares Weights and RSQ's for
Models 1 and 2C Derived from Data in Table 1

Model 1
Weights

Model 2C
Weights

17.4 15.9

-3.0 ---*

0.0 ---*

.1 .1

2.1 2.1

-.9 -.9

6.2 6.1

.883 .673

Number of linearly A
Independent Vectors ...X= 5 _a= 4

F = (.883 .673)/(5-4) = 5.40, df = 1,3
(1 - .883)/8-5

* Vectors X1 and X2 are not in Model 2C.



Table 3

Sample Data for a One Group - Multiple Trial Analysis with More than Two Trials

Person
Pre-Test Post-Test Long-Term

Retention Test

1 5 15 10

2 8 20 8

3 4 15 8



Table 4

Least Squares Weight:; and R2's for Models II.1 and II.2b
derived from Data in Table 3

Model 1 Model 2b
Vector Weights Weights

U 8.32 7.33

X1 -2.99

2.50 - vector
X2 7.99 (X1 + X2)

X3 0.0 -.0

P1 0.0 .99

P2 2.02 2.99

P' -.98 0.0

R2 .937 .119

Number of linearly
independent vectors 5 4

F _ (937 - .119)/(5 -4) = 51. 86, df 1, 4
(1 - .937)/(9-5)

Directional probability = .001



Table 5

Least Squares Weights and R21 s for Model II.1 and II.3c from Data in Table 3

Model II.1 Model II.3c
Vector Weights Weights

U

X1

X2

X3

P1.

P
2

P3

(111(1 + X2)

8.32

-2.99

7.99

0.0

0.0

2.02

-.98

00,10,10

IN NO.

5.01

00 .1111.

.99

2.98

0.0

.66

0.0

Ft
2

.937 .495

Number of linearly
independent vectors 5 4

F = (.937 - .494)/0 - 4) = 27.99, df 1, 4
(1 - .937) /9 - 5

Directional probability = .003



Group

Control
Group

Experimental
Group 1

txperimental
roup 2

Table6

Sample Data for a Three Grog Two Trial Analysis

Subject

1

Trial
Pre-Test Score Post-Test Score

3 4

6

3

5

12
15



R
2=

Table 7

Numerical Solutions for Models 6, 7b and 8b to Analyze the

Trial Effect and the Groups x Trial Interaction
(Number of Observations = 12)

Model 6
Vectors Weights

Model 7b
Vectors Weights

Model 8b
Vectors Wo.ahts

X
1

X2

X3

X4

0

0

.15

3.66

X1 4X2

X3-X1

X1 +X4

X5-X1

-4.06

.52

.29

-.10

X
1
+X

2

X3 -X2 -X6

X2 +X4 +X6

X5-116

-3.75

.23

4.10

.16

X
5

-.07 X1 +X6 i
5.05

X6 9.43

P1
0 Pi 0 P1 0

P
2

0 42
0 P

2
0

P
3

1.60 P
3

1.51 P
3

0

P4
.11 P

4
0 P4 -1.53

P
5

-.65 P5 -.35 P
5

.08

P6 1.81 P6 2.14 P6 2.56

U 3.49 U 5.39 U 5.09

.991

Number of 9

linearly
independent vectors

F ratio

degrees of Freedom

.655

8

Trial Effect

112.6

1, 3

.716

7

Groups x Trial Effect

46.2

2, 3



Table 8

Numerical Solutions for Models 9 and 10 to Analyze
the Groups x Trials Interaction Using Difference Scores

(Number of Observations = 6)

Model 9 Model 10
Vectors Wei hts Vectors Wei hts

X1

X
2

X
3

U

R
2

.969

-3.50

0

6.00

3.50

Number of 3

Linearly
Independent Vectors

F ratio

.00

1

4.33

Groups x Trial Effect
46.2

degrees of Freedom 2. 3



Table 9

Numerical Solutions for Models 11 and 12
to Analyze the Groups Effect
(Number of Observations = 6)

Model 11 Model 12
Vectors Weight

X1

X2

X3

U

-5.50

0

5.00

12.50

Vector Weight

12.33

.866 .0G

Number of Linearly 3 1

Independent Vectors

F ratio
degrees of Freedom

Groups Effect
9.73
2,3
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Figure 1. The design matrix implied by Model 1.
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observation Y U X1 X2 X3 X4 X5 X6 rl P2 P3 P4 P5 P6

1 3 1 1 0 0 0 0 0 1 0 0 0 0 0

2 4 1 1 0 0 0 0 0 0 1 0 0 0 0

3 4 1 0 1 0 0 0 0 1 0 0 0 0 0

4 3 1 0 1 0 0 0 0 0 1 0 0 0 0

5 5 1 0 0 1 0 0 0 0 0 1 0 0 0

6 4 1 0 0 1 0 0 0 0 0 0 1 0 0

7 9 1 0 0 0 1 0 0 0 0 1 0 0 0

8 7 1 0 0 0 1 0 0 0 0 0 1 0 0

9 3 1 0 0 0 0 1 0 0 0 0 0 1 0

10 5 1 0 0 0 0 1 0 0 0 0 0 0 0

11 12 1 0 0 0 0 0 1 0 0 0 0 1 0

12 15 1 0 0 0 0 0 1 0 0 0 0 0 1

Figure 6. The design matrix implied by Model 6.
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0

observation Y U (X1 +X2) (X3-X2-X6) (X2+X4+X6) (X5+X6) P1

1 1 0 .0 1

2 1 0 0 0 0

3 1 -1 0 1

4 1 -1

5 0 1 0

6 0 1 0 0

7 9 0 0 0 0

8 7 0 0 0

9 3 0 0 1

10 5 0 0 1

11 12 0 -1 0

12 15 0 -1 0

Figure 8. The design matrix for Model 8b.
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Figure 11. The design matrix implied by Model 11.


